Integrated Carbonate Rock Type Prediction Using Self-Organizing Maps in E11 Field, Central Luconia Province, Malaysia

نویسندگان

چکیده

Reducing uncertainty in 3D carbonate rock type distribution is a critical factor that profoundly impacts field development for hydrocarbon or carbon capture and storage (CCS) projects. Miocene reservoirs the Central Luconia offshore region are economically important global gas reservoirs. The nature of these rocks can be visually distinct core multiscale reservoir heterogeneity might vary scale from 100-m to sub-millimeter scale. This work presents series steps workflow obtain spatial information about organization scheme types, most petrophysical sedimentary controls on property E11 field, buildup, located Province, Malaysia. data were generated supervised neural Kohonen algorithm. types predicted with this propagated using IPSOM probabilized self-organizing maps SOM. tool used classifying multivariate samples according “patterns” responses. includes several steps: A Step 1—Core description, B 2—Thin section C 3—Well log interpretation, D 4—IPSOM facies prediction depth plots showed close correspondence core-based terms stratigraphic tight layers, proportions, juxtaposition. result sufficient merit application logs into future porosity model understand lateral vertical distribution. results build realistic digital twin subsurface, geological modeling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

using game theory techniques in self-organizing maps training

شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...

prediction of stock market crash using self-organizing maps

market crash is a phenomenon which occurs in stock markets occasionally and leads to loss of the investors’ wealth and assets in a relatively short period of time. therefore, attempts for prediction of this phenomenon are of much importance for the investors, financial institutions and government. to this date, numerous and varied studies have been carried out for predicting and modeling  stock...

متن کامل

Green Product Consumers Segmentation Using Self-Organizing Maps in Iran

This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...

متن کامل

Fault Prediction in Aircraft Engines Using Self-Organizing Maps

Aircraft engines are designed to be used during several tens of years. Their maintenance is a challenging and costly task, for obvious security reasons. The goal is to ensure a proper operation of the engines, in all conditions, with a zero probability of failure, while taking into account aging. The fact that the same engine is sometimes used on several aircrafts has to be taken into account t...

متن کامل

Optimization of Self-Organizing Maps Ensemble in Prediction

The knowledge discovery process encounters the difficulties to analyze large amount of data. Indeed, some theoretical problems related to high dimensional spaces then appear and degrade the predictive capacity of algorithms. In this paper, we propose a new methodology to get a better representation and prediction of huge datasets. For that purpose, an ensemble approach is used to overcome probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12157688